Large Deviations for Nonuniformly Hyperbolic Systems
نویسندگان
چکیده
We obtain large deviation estimates for a large class of nonuniformly hyperbolic systems: namely those modelled by Young towers with summable decay of correlations. In the case of exponential decay of correlations, we obtain exponential large deviation estimates given by a rate function. In the case of polynomial decay of correlations, we obtain polynomial large deviation estimates, and exhibit examples where these estimates are essentially optimal. In contrast with many treatments of large deviations, our methods do not rely on thermodynamic formalism. Hence, for Hölder observables we are able to obtain exponential estimates in situations where the space of equilibrium measures is not known to be a singleton, as well as polynomial estimates in situations where there is not a unique equilibrium measure.
منابع مشابه
Large and Moderate Deviations for Slowly Mixing Dynamical Systems
We obtain results on large deviations for a large class of nonuniformly hyperbolic dynamical systems with polynomial decay of correlations 1/nβ, β > 0. This includes systems modelled by Young towers with polynomial tails, extending recent work of M. Nicol and the author which assumed β > 1. As a byproduct of the proof, we obtain slightly stronger results even when β > 1. The results are sharp i...
متن کاملOn the Uniform Hyperbolicity of Some Nonuniformly Hyperbolic Systems
We give sufficient conditions for the uniform hyperbolicity of certain nonuniformly hyperbolic dynamical systems. In particular, we show that local diffeomorphisms that are nonuniformly expanding on sets of total probability are necessarily uniformly expanding. We also present a version of this result for diffeomorphisms with nonuniformly hyperbolic sets.
متن کاملAlmost Sure Invariance Principle for Nonuniformly Hyperbolic Systems
We prove an almost sure invariance principle that is valid for general classes of nonuniformly expanding and nonuniformly hyperbolic dynamical systems. Discrete time systems and flows are covered by this result. In particular, the result applies to the planar periodic Lorentz flow with finite horizon. Statistical limit laws such as the central limit theorem, the law of the iterated logarithm, a...
متن کاملA Vector-Valued Almost Sure Invariance Principle for Hyperbolic Dynamical Systems
We prove an almost sure invariance principle (approximation by d-dimensional Brownian motion) for vector-valued Hölder observables of large classes of nonuniformly hyperbolic dynamical systems. These systems include Axiom A diffeomorphisms and flows as well as systems modelled by Young towers with moderate tail decay rates. In particular, the position variable of the planar periodic Lorentz gas...
متن کاملConvergence of moments for Axiom A and nonuniformly hyperbolic flows
In the paper, we prove convergence of moments of all orders for Axiom A diffeomorphisms and flows. The same results hold for nonuniformly hyperbolic diffeomorphisms and flows modelled by Young towers with superpolynomial tails. For polynomial tails, we prove convergence of moments up to a certain order, and give examples where moments diverge when this order is exceeded. Nonuniformly hyperbolic...
متن کامل